Define, Design, Develop

DOUBLE

ow to repurpose the unit tests
you're doing to help create the
locumentation you're not.

14 BETTER SOFTWARE FEBRUARY 2005 www.stickyminds.com



We’re spending a large percentage of our
development budget on writing documen-

tation. For instance, ’'m working on a
project to create a reusable set of infrastructure components
that are intended to be used by .Net programmers as a starting
point for their own business applications. Our project output is
code, so documentation is especially important to us, but still
we’re spending quite a lot of our time and budget writing about
what we’re doing rather than actually doing it. Something just
seems out of balance.

A big part of this cost is the early and continued maintenance
of keeping the needed API documentation in sync with code
changes. We’re an Agile team, developing software using Test
Driven Development (TDD). The advantage to developing code
in this manner is that it allows us to change and evolve the
software as the requirements change, and change they do! But
as the code changes, the API documentation needs to change
as well, and this has been hard to make happen at the same rate
as our code is changing.

To solve this problem, we are leveraging the
m unit tests that we use to design our system

and make changes safe. We are changing
the way we write our tests so that they serve as API documenta-
tion. Now the process of creating our code through TDD is the

process of creating the documentation, and evolving the code also
evolves the documentation. We call this Agile Documentation.

www.stickyminds.com FEBRUARY 2005 BETTER SOFTWARE 15



Define, Design, Develop

Documentation Pet
Peeves

There are two things that have always re-
ally bothered me about traditional docu-
mentation. This whining reflects seven-
teen years of professional experience,
and seventeen years of realizing that fun-
damentally nothing has changed to make
things better. Starting with Unix manual
pages, into javadoc, and finally into
MSDN documentation, the issues that
existed in the late eighties into the
nineties still exist today.

My first pet peeve is that the docu-
mentation I’'m reading seldom answers
the question ’'m asking. I always seem to
have this uncontrollable urge to junk the
documentation and just go read the
source. The source is the only unambigu-
ous definition of what the system does,
and all answers are available there. Un-
fortunately, reading the source is becom-
ing less and less possible in this age of
proprietary software. You’re left with
trying to read between the lines of what
documentation you can find, and then ei-

ther Googling for examples or writing
your own.

My second source of irritation stems
from the static nature of the documenta-
tion for the code 'm writing. As our in-
dustry has learned more about writing
code, and as our tools for writing that
code have gotten infinitely better (Eclipse

Join Brian Button on StickyMinds.com
7 February through 18 March for a
facilitated RoundTable discussion on
tests as documentation. Ask questions,
share stories, and get more details by
logging on to www.stickyminds.com/
roundtable.asp.

and Intelli] for Java, ReSharper for .Net),
it has become easier and easier to modify
our code. We can change the names of
methods, add and remove parameters
from these methods, split classes into
two, extract interfaces, etc., all of which
change our public API. We do this be-
cause it makes our code easier to read,

modify, digest, and understand. But the
documentation for these methods is not
changed at the same time by the same
tools. Changing documentation is always
a separate, manual pass that is (maybe)
done later. And the cost of doing this
post-coding documentation step is fre-
quently a drag on development. There
have been many times during my career
that my team has really, really wanted to
make a change in the software—a change
that is clearly dictated for business or
software quality reasons but that is disal-
lowed because of the documentation
costs associated with that change. That
just seems backward to me.

What I'd really like to see, and what
Agile Documentation will do, is some-
thing that is going to address both of these
problems. Text-based documentation
doesn’t answer my detailed questions, but
examples do. The way we are writing our
unit tests makes them great examples of
everything that our system is designed to
do. And these examples are forced to
change along with the code, which solves

UNIT TESTS DEFINED

In this context, unit tests are specific, targeted probes into the be-
havior of one particular path through the application code. They set
up some aspect of the system, perform some action on it, and as-
sert something about the reaction of the system. Unit tests are not
performance tests, scalability tests, security tests, or other system-
level kinds of tests. They are focused on a single module and its re-
lationship with the system at large.

ANATOMY OF A UNIT TEST
The figure at right shows a typical unit test. This test documents
one behavior of the System.String class that is part of

the Microsoft .Net Framework. In it, we see that the be-
havior we are documenting converts the contents of a
string object to uppercase and results in the framework {
creating a new string instance. How do we know that?
We know because we read the name of the test method.
It is a simple, clear, assertive statement of the behavior
being tested. By naming tests like this, we help people
find the right test to read and help them understand
what the test is for.

The code in the test is very simple and declarative. It
breaks down into three separate parts, originally de-
scribed by Bill Wake as the three “A’s” of unit tests. The
first part is where we arrange the environment so that
we can test. In this case, we're defining a string object

16 BETTER SOFTWARE

FEBRUARY 2005 www.stickyminds.com

containing a well-known piece of data. The second piece is where
we act on the system to force it to change state. Here we are call-
ing a method on the original string object to cause it to return an
uppercase version of the original string’s contents. And finally, we
assert something about the behavior of the system, in this case
that the original string is unchanged after the method call in the
act section, and that a new string was created with an uppercase
version of my first name.

Admittedly, this unit test is testing a very simple concept, but
that’s part of what can make a unit test effective as documentation.
As a test writer, you have to focus on writing tests that are simple
and easily read and understood. Without this property, the tests are
no more useful as documentation than the application code.

public void ConvertingStringToUpperCaseCreatesNewStringInstance()

// Arrange
string lowerCaseString = "brian";

/I Act
string upperCaseString = lowerCaseString.ToUpper();

/I Assert
Assert.AreEqual("brian", lowerCaseString);
Assert.AreEqual("BRIAN", upperCaseString);




Define, Design, Develop

Customer Tests
as Documentation

Using tests as documentation is nothing new for Jennitta Andrea,
partner and senior consultant at clearStream. She has years of experi-
ence creating customer tests that both validate system functionality
and act as a core piece of documentation that provides the entire
team with a big picture of sys-
tem workflow and the overall
business process description.
Although Jennitta uses Agile
strategies to set up the customer testing that feeds into documenta-
tion, she says one size does not fit all projects.

“There really isn't one standard way to do this. There isn't one tool
or framework that will fit every situation,” she says. “Luckily we have a
lot of different types of tools to choose from, because the best strategy
and tool depends on the overall context and the level of experience of
the people on the project.”

And while she believes that ideally the customer should write the
tests, Jennitta has found that this rarely happens.

“There are some tools that are geared toward the customer writing
the test himself, but I've been involved in many situations where the
customer is anly involved in reviewing the tests or where he really just
wants to validate the results, to make sure that when the tests run, the
results are correct and the system truly does what it is supposed to
do,” she explains.

Even with all the tools available, Jennitta warns that it's not easy to
make tests that can be used effectively as documentation for system
requirements. In fact, tools can sometimes get in the way.

“|t takes a lot of experience to write effective customer tests, even
with tools like FIT, which presents the content in a friendly way for the
end-user, or Canoo WebTest, which uses a higher-level language for
user interface testing,” she says. “You can easily get caught in the trap
of simply expressing your tests in terms of user interface interaction—
‘push this button,” ‘enter text in this field."”

And that, she contends, is much too low level to be effective, be-
cause the business meaning contained in the test is obscured.To coun-
teract this, she recommends building the tests on a domain-specific
testing language.

“A domain-specific testing language provides a vocabulary for ex-
pressing tests in terms of user interaction goals with the system. For
example—a billing system. Instead of specifying the tests with low-
level statements like ‘click here’ ‘enter there," the test says ‘generate
charges.’ To support the automated execution of these tests, we often
need to extend or enhance the tools we use to translate this specific
testing language into a sequence of lower-level concepts. Now cus-
tomer tests can be expressed in business terminology and still be used
to automatically verify system behavior,” Jennitta explains. This makes
the test more viable as documentation.

According to Jennitta, another key component in using tests as
documentation is to focus on the seemingly simple things such as
naming and organizing your tests. As easy as organizing the tests
sounds, Jennitta has found that most people don't think of it.

“Because tests are very specific and very detailed in how they are
expressed, and . . . [because] they can be executed, the expectation is
this is the best form of requirements you can be given.”

Yet, Jennitta says, “Depending on the project, you could end up
with literally hundreds of tests. If these tests are your only form of re-
quirements and if you can't find all of the requirements related to a
particular functional area because the tests aren't grouped or named
very well, then you don't really have the big picture of what your sys-
tem requirements are.”

On a recent project, this need for big picture insight led Jennitta's
team to the wiki, albeit late in the project.

“We hadn't used a wiki before, so it was fairly new to us,” she re-
calls. “We began using it just as a way to put everything together for
the support team. When we discovered it was easy to use and how
much potential it had, we realized it should have been used at the be-
ginning to help the development team as well.”

While Jennitta specializes in Agile methods, she says she doesn't
think it's off course to have some amount of “real” textual documen-
tation.

“For all but the simplest system, | think it is still necessary to com-
bine customer tests with some kind of traditional documentation,” she
explains. “Use diagrams and text to provide the necessary background
for the system at an appropriate level for the team. Providing links to
the customer tests within this content provides the contextual group-
ing that is necessary. If possible, tie everything together within a wiki.
This is an easy way to combine . . . the textual background with the list
of tests that correspond to that area.”

my second issue. Agile Documentation
could be the first thing in my seventeen
years in the industry that fundamentally
addresses the two big documentation
shortcomings I've seen since day one.

Agile Documentation

If you are already writing unit tests, you
are a good part of the way toward creat-
ing Agile Documentation. We just have
to tweak a few things that you are doing

18 BETTER SOFTWARE FEBRUARY 2005

to make it easier to find the appropriate
unit tests and make those unit tests as un-
derstandable as humanly possible for as
many different readers as possible.
Traditional documentation for a sys-
tem provides both an overview of that
system and specific, individual usage de-
tails for methods and classes. Unit tests,
as presented here, do a good job of de-
scribing the usage details for pieces of
our system at a highly granular level.

www.stickyminds.com

However, we can expand their scope of
description a bit if we organize and write
them in such a way that they tell a story.
They won’t replace the overview aspects
of traditional documentation, but they
will do a better job of explaining the de-
tails of a system.

We do this by creating a Test List. A
Test List is a narrative about what the
class or subsystem under test is supposed
to do. It starts out by specifying basic be-



Define, Design, Develop

Notifies no one if no one is listening when file changes

Notifies sole registered listener when underlying file changes

Notifies all registered listeners when underlying file changes

Data about changed file is included in callback argument when callbacks occur

Removing listener prevents that listener from being called back

No callback will happen after last listener is removed

Deleting watched file does not cause any callbacks

Creating watched file after we start watching it will not cause any callbacks

Creating and changing watched file after we start watching it will cause one callback

Overwriting existing watched file causes exactly one callback

Notifications do not accumulate while callbacks are happening

Disposing of file watcher stops callbacks from happening

Exception thrown in callback method stops other listeners from being called back

Figure 1: My initial Test List for this class is not complete. And that’s not important.

What is important is that it is completed by the time the class is implemented.

haviors and grows toward more complex
situations, including telling stories about
error and exception handling. Some of
the behaviors being documented will be
immediately understandable to anyone
looking at the class for the first time, and
some will be so advanced that only high-
ly experienced programmers who under-
stand the class intimately will be able to
comprehend them. This is OK because
we have different kinds of users for our
classes. The basic examples will help
those using our class for the first time
start to get that comprehensive under-
standing and will demonstrate how to
use a feature quickly and explicitly. Over
time, as the users’ needs from any class
grow, the users will find that some of the
entries in the Test List will begin to in-
trigue them, and then they can start using
that aspect of that class.

Building a Test List

So let’s look at building a Test List. As
an example, let’s take a class that I im-
plemented recently. This class has the re-
sponsibility of raising a notification
event whenever a particular configura-
tion file changes. This notification is sent
to all objects that have previously regis-
tered with this object to be told about
these changes. That’s the entire problem
description.

20 BETTER SOFTWARE FEBRUARY 2005

So where do we start with our first
test? I usually start with the most basic
state of the system being created: its be-
havior right after being initialized. This is
a simple case to get started with, and, no
matter what else you implement, this be-
havior still has to work. So, the first test in
my list would be to document that I can
create this class, which I called a Configu-
rationChangeFileWatcher, and that the
class will do nothing if the file it is watch-
ing changes but no one has registered in-
terest in hearing about that change.

Test 1: Notifies no one if no one is listen-
ing when file changes

Please notice something about this test
description. It reads like a requirement
statement of the class being written. It is
also entirely concerned with the intent of
the class being developed and not con-
cerned with the implementation of the
test. There is nothing in the description
that describes the implementation steps
inside the test, and that’s how it should
be. Written from the point of view of a
user of the class, this description docu-
ments the class’s externally visible behav-
ior, just like a requirement would.

Our next test should add something
valuable to our first test description. The
next logical thing to describe would be

www.stickyminds.com

its behavior after a single interested party
has registered as a listener and the file
changes. This test would illustrate the
most basic feature of the Configura-
tionChangeFileWatcher: It will notify a
listener when the underlying file changes.

Test 2: Notifies sole registered listener
when underlying file changes

The next step could be to document that
all listeners are notified when multiple
listeners are registered.

Test 3: Notifies all registered listeners
when underlying file changes

After this test, we have the basic operation
of the class defined to the point that a user
of the class could read this list of tests and
get an idea of how our system works. He
still wouldn’t know how to use the Con-
figurationChangeFileWatcher in code yet,
as we haven’t shown any of our examples,
but that will come soon enough.

The best part of documenting a class’s
behavior like this comes in when you
start talking about those odd things that
can happen during an object’s life. What
do you suppose the class does if there are
many listeners registered to be called
back if the configuration file changes,
and one of those callback methods
throws an exception for some reason?
Are the rest of the listeners called back
anyway, or do the callbacks stop at that
point? I defy you to find even a mention
of a detail like this in any written manual
for any class. On the other hand, when
implementing the class, I have to write
some kind of code to handle this situa-
tion, so I have to have a unit test for it,
which means that a description of this
test ends up on my Test List.

Test N: Exception thrown in callback
method stops other listeners from being

called back

Now that’s a pretty specific scenario to
be documented, but that’s exactly the
kind of thing I would previously have
had to read the code to find out. Now it
is documented for me, explicitly, and I
know exactly how the code behaves.
Figure 1 shows my initial Test List for
the ConfigurationChangeFileWatcher. It



[Test]

public void NotifiesSoleListenerlfFileChanges() {

string fileToWatch = "MyFile.Test";

string matchingConfigSection = "MySection";

using (ConfigurationChangeFileWatcher watcher =
new ConfigurationChangeFileWatcher(fileToWatch, matchingConfigSection))

watcher.ConfigurationChanged +=

new ConfigurationChangedEventHandler(FileChangedCallback);

watcher.StartWatching();
Thread.Sleep(100);

File.SetLastWriteTime(fileToWatch, DateTime.Now + TimeSpan.FromHours(1.0));

Thread.Sleep(250);

Assert.AreEqual(1, numberOfConfigurationNotifications);

Figure 2: Start implementing the tests, one by one, in a traditional TDD manner.

is helpful to note a few different things
about this list. First of all, it is not com-
plete. And that isn’t important. What is
important is that it is complete by the
time that class is implemented. When I
first implement a class, I'll put down all
the behaviors I can think of, but I always
think of more situations to try, and that
leads me to create new test descriptions,
which turn into new tests. The other
thing to understand is that each test state-
ment may not make sense initially to the
developer using this class. But as the de-
veloper gets more experience using the
ConfigurationChangeFileWatcher and as
different situations arise—such as the one
about exceptions and callbacks—addi-
tional, more advanced test descriptions
will begin to make sense and he’ll know
where to look to understand those behav-
iors. A developer’s understanding of the
Test List for a class grows with his under-
standing of that class.

Implementing Unit Tests
Once I have created my initial pass at the
Test List, I turn that into a test fixture and
start implementing the tests, one by one, in
a traditional TDD manner, following the
same pattern as described in the sidebar
“Unit Tests Defined.” (See Figure 2.) The
biggest difference in writing tests for docu-
mentation rather than solely for TDD pur-

poses is that they have to be made ex-
tremely understandable on their own. This
means that the code must be kept simple,
great names must be used for variables
and methods called in the test, and the
purpose of the test must be obvious.
There are many interesting things
documented by this single unit test that
can be understood by a knowledgeable

EACH TEST STATE-
MENT MAY NOT MAKE
SENSE INITIALLY TO
THE DEVELOPER USING
THIS CLASS.

.Net programmer seeking to use this
class. Much of this is admittedly context
dependent, but users of your class should
already understand its context, so this
shouldn’t be much of a problem. Casual
readers who don’t understand the con-
text may have more trouble understand-
ing some of the unit tests, but this is a sit-
uation quickly addressed by experience.
An interesting way to read a unit test
is to start backward. We see that the in-
tent of this test is to declare that a single
listener is notified when the watched file
changes. This is documented through the

www.stickyminds.com

Define, Design, Develop

assertion, Assert.AreEqual, at the end of
the test. The part of the test in the middle,
starting with the using statement, declares
several interesting things. The first is that
it shows a user how to create an instance
of this class. The constructor of this class
takes the name of the file to watch along
with the configuration section that is rep-
resented by this file. We also see a very
important piece of information to a .Net
programmer. The using statement docu-
ments the fact that ConfigurationChange-
FileWatcher implements a particular re-
source management strategy, called
IDisposable. In .Net terms, this means
that this class must be explicitly handed
back to the .Net runtime for resource
reclamation rather than just allowed to be
garbage collected at a later date. This is a
critical piece of information for a .Net
programmer. Failing to follow this prac-
tice each and every time this class is used
will result in failures caused by resource
exhaustion. This unit test documents this
behavior explicitly, something that is not
usually shown in usage examples in the
.Net documentation.

Once the object is created, we see how
to attach a callback to the Configura-
tionChangeFileWatcher’s Configura-
tionChanged event. This syntax is how
Net allows a programmer to associate a
callback method with the event that caus-
es it to be called. We also see that we have
to tell the object to start watching the file
before it will actively begin watching for
changes to that file. The rest of that sec-
tion just waits for a bit, changes the Last-
Werite time of the watched file, and waits
a bit longer (250 mSec) for the object to
notice the change.

To a .Net programmer, this test docu-
ments a lot of information in just a few
lines of code. It does require the reader to
have some knowledge of the underlying
technologies, in this case .Net and C#, and
also of the domain, to make the test con-
tents relevant to them. But these prerequi-
sites should be easily fulfilled by almost
everyone looking at your API documenta-
tion. They are, after all, programmers.

One thing to note is that there are cer-
tain variables, like numberOfConfigura-
tionChanges, that seem to appear out of
nowhere. These extra variables are part
of the test class itself. In my opinion, they
support the test, but their definitions are

FEBRUARY 2005 BETTER SOFTWARE 21



Define, Design, Develop

ONCE'AND ONLY ONCE
MEETS REPLICATED LOGIC

One of the basic precepts of Test Driven Development is something
called the principle of Once and Only Once, frequently seen as
0AOQO. This principle tells you that you cannot permit any duplica-
tion at all in your source code because that duplication is going to
make your code more complex and harder to maintain. Changes
that should only have to be done in one place may have to be done
in several, and there is no reliable, automated way to find all of
those places. Additionally, duplication in your code may be trying to
tell you something. Some abstraction in your system may be trying
to find its way out of your code, and it may be talking to you
through that duplication. Listen to it, expose it through judicious
refactorings, and eliminate the duplication.

The creators of the many testing frameworks for Agile develop-
ment, including JUnit and NUnit, have taken this principle to heart
and given their users a standard way to share code common to indi-
vidual test cases. Each of these frameworks provides setup and
teardown methods that are automatically called before and after
each unit test method runs. The purpose of these extra methods is
to allow you to factor common test fixture creation and tear down

Before | started thinking about tests as docu-
mentation, | would aggressively refactor my
test code to move any replication into these
methods. This would leave only the unique
code inside each test method. But once | start-
ed thinking about the documentation aspects of unit tests, | began
reconsidering this behavior. The problem with it, | was finding, was
that it made individual tests harder to read and understand. | could
not just read a single unit test and understand each of its three “A’s"
(arrange/act/assert). | had to go look in the SetUp and TearDown
methods to get the context in which the tests were operating and
then go look at the unit test, which took away from its understand-
ability. Because of this, I've stopped moving logic that is critical to
understanding a unit test out of that test. | make a point to keep
code that helps arrange or act inside each test. Many tests still have
extra logic whose purpose is to set up and create incidental, house-
keeping data, and I'll still refactor this common logic into SetUp and
TearDown, but this doesn't affect a test’s readability. And if it does,
I'll move this logic back. | find this makes tests more readable on
their own, improving their usefulness as documentation.

The other side of the issue is that | do find myself occasionally
paying for this replication. At times, if the underlying code
changes, | have to change some of this replicated logic in several
places. | accept this as a cost of making the tests more under-

logic into its own place, eliminating any duplication in that logic.

not critical to understanding the test.
Their names should be clear enough to
document their intent. Things like this are
frequently factored out of each individual
unit test and left to the testing infrastruc-
ture to manage and initialize. If it turns
out that these extra concepts are essential
for understanding a test, then they should
be moved back into the body of each test.

Beyond Unit Tests

So far the unit tests that we have talked
about creating are an important part of
Agile Documentation, but, though some
in the Agile world would disagree, they
are not sufficient in and of themselves.
The tests go a long way toward describ-
ing how something is used, but it is diffi-
cult to get an overview of a class from
them. There are some words that are
needed. For example, in the class dis-
cussed above, I believe a couple of sen-
tences about the ConfigurationChange-
FileWatcher would go a long way to
getting an understanding of the context
of the class described. Something like:

The ConfigurationChangeFileWatcher is
responsible for raising events to its regis-

22 BETTER SOFTWARE FEBRUARY 2005

tered listeners when the configuration file
it is watching is changed. Clients can regis-
ter a callback method with an instance of
this class, and those callback methods will
be invoked when the watched file changes.

The big advantage of an overview like
this is that it is at such a high level that
there is nothing in it that is likely to
change as a class evolves. It gives the nec-
essary overview but does it in such a way
that it doesn’t add to the maintenance
burden of the documentation.

Adoption

As I said before, if you are already writing
unit tests as a team, then you’re a good
part of the way to adopting Agile Docu-
mentation techniques. All that is needed
is to focus a bit more on telling the story
of your system through your tests.

If you are not writing unit tests as an
organization, all hope is not lost. You
just need to start writing them. Individ-
ual developers need to start writing unit
tests for their code, preferably in a test-
first manner, but any sort of unit test will
help. And the organization has to agree
to value the tests. Programmers, QA,

www.stickyminds.com

standable, but this is a factor to consider.

managers, executives—everyone—must
understand and agree that these tests
form a valuable investment that is worth
preserving over time. Once everyone
buys in and you are writing tests, you’re
ready to go on to the next phase.

The next step should be to work to-
gether as a team while creating your first
few Test Lists. This will allow everyone
to come to a common understanding of
the level of detail to which your tests
should be described and to develop a
common naming style for all tests. As a
team, you should be very conscious of
creating Test Lists that describe the intent
of the test, not the test’s implementation.
By working together, the entire team can
gain experience and each member can re-
ceive feedback as he learns how this
process works. And as a team, when you
need to use a method someone else wrote
you should start using the Test Lists de-
vised by your team instead of looking at
code. By following your own advice,
you’ll get great feedback on what you are
doing right and what you can improve
on in writing your Test Lists.

Similarly, when implementing the
tests, you should focus on creating tests



that are self-documenting—they should
be complete unto themselves, they should
be easily readable, and they should de-
scribe an entire usage example in a way
that a reader later will find useful. The
entire team should review all the tests
over the first few days, so all involved
can come to an understanding about a
common style in writing these tests.
Again, whenever possible, the team
should use these tests instead of looking
at source code. The idea here is that you
should live and breathe in the same envi-
ronment as your users, so you can under-
stand what problems and successes they
may experience.

The final step of the transition, and
probably the hardest, is to evangelize.
You’ve been using Test Lists and unit
tests to help you understand the code of
others. Start to tell others about it. Blog
about it. When a user asks you a ques-
tion about your code, don’t tell him
where to look in the code—tell him
which test cases to look at. If you have
the opportunity, grab a few of your users
and walk them through an example of
learning about your code through the
unit tests. The first steps in this transition
may not be easy or comfortable for you
or your users, but the payoff comes later.
That’s when both you and your users can
start to get detailed, explicit questions
answered about the code without ever
having to look at the code.

Next Steps

For larger systems, it will be difficult for
users to find the tests they need. Larger
systems can have thousands of tests, so
we need to provide some kind of organi-
zation to let people find what they’re
looking for. There hasn’t been much
progress made in this area yet, but it is
coming. We're still fairly early in the unit
test adoption process, let alone the tests-
as-documentation revolution to follow, so
little thought to larger scale organization
of tests has happened. But I can see where
we’d really like to be in a few years.

The next logical step would be for
manual pages, like those created through
Javadoc, to have links from application
methods to those tests that exercise them.
The manual pages would still have the
overview documentation in them, but the
details would be exposed as links to unit

tests. This would all be autogenerated
through our documentation tools. But
it’s going to take a while to get there. In
the meantime, there are some things that
we can do to provide help to our users.
The first, and most obvious step, is to
manually create Test Maps. Test Maps
are just documents that list the tests asso-
ciated with each application method.
Manual creation is obviously not the op-

THE IDEA HERE IS
THAT YOU SHOULD LIVE
AND BREATHE IN THE
SAME ENVIRONMENT
AS YOUR USERS.

timal solution, as it suffers from the same
maintenance issues as written documen-
tation—there is nothing automated to
help you find what needs to be changed,
so it must be kept up to date through
manual inspection. But giving users this
Test Map is the first step toward helping
them begin to rely on the unit tests.

The next step along the way is to au-
tomate the process of creating the Test
Map. I'm writing a tool that will use
markups of test code to create this Test
Map for me. This will automate the
process of creating the map, but it still re-
lies on the programmer’s manually main-
taining the markup on the test methods,
so we’re still not all the way there.

The final step along the way is to figure
out how to do all of this automatically.
This program would need to inspect all
the test code and find all application
methods used in it and create the Test
Map for you without relying on manual
markups as before. The hard part about
this is that application methods can be
mentioned in a unit test without really be-
ing part of the test. (For instance, methods
can be part of the Arrange section, where
the context for a test is set up.) We’re real-
ly concerned about methods that are exer-
cised by a test, not just all methods men-
tioned. This is a harder problem.

The other part of the issue is that doc-
umentation generation tools will need to
be updated to make use of our Test Maps
to create manual pages with embedded
links to our unit tests. All of this can, and

www.stickyminds.com

Define, Design, Develop

will, happen, but it will take several more
years until we start to see these tools.

Conclusion

My original premise for writing this was
that our documentation costs on our
project were a large percentage of the
total budget, and I wanted to find a way
to spend more on features and less on
writing about the features. Our TDD
project had thousands of unit tests lying
around waiting to be used for some-
thing. This seemed to be a marriage just
waiting to happen.

So I started looking at what it would
take to combine the two. I had to change
my test-creation process a bit by really
focusing more on simplicity and naming.
I had to look at my tests in a different
way and make sure that the tests told the
story of my class or subsystem—and that
they told the whole story. And I had to
get others on my project to think the
same way. This involved a cultural
change, which we were willing to make.
Other organizations may not be willing
to change in this way, and this technique
may not be applicable to them.

The one piece we’re missing, and the
extra piece I’'m spending some time inves-
tigating, is how to organize these tests
and make them part of our published
documentation. We’re still working on
this, but we’ll get there eventually. {end}

Brian Button (agile@agilesolutionsgroup.
com, http://www.agilesolutionsgroup.
com) is a serious believer in the Agile
way of development. He teaches, con-
sults, mentors, and develops code this
way, every day.

Sticky
Notes

For more on the following topics go to
www.stickyminds.com/bettersoftware

m Source code and documentation for
TestMap

m Reference to TestMap source code

m Microsoft patterns and practices
source code developed through Test
Driven Development

m Test Driven Development links and
resources

FEBRUARY 2005 BETTER SOFTWARE 23





